Alkali-metal-catalyzed addition of primary and secondary phosphines to carbodiimides. A general and efficient route to substituted phosphaguanidines[†]

Wen-Xiong Zhang, Masayoshi Nishiura and Zhaomin Hou*

Received (in Cambridge, UK) 29th June 2006, Accepted 18th July 2006 First published as an Advance Article on the web 2nd August 2006 DOI: 10.1039/b609198a

Organo alkali metal compounds such as "BuLi and $(Me_3Si)_2NK$ act as excellent catalyst precursors for the addition of phosphine P–H bonds to carbodiimides, offering a general and atom-economical route to substituted phosphaguanidines, with excellent tolerability to aromatic C–Br and C–Cl bonds.

Metal-catalyzed C-P bond formation reactions by P-H bond activation are among the most important transformations in synthetic organic chemistry.^{1,2} Catalytic addition of phosphine R₂P-H bonds across the C-N double bond of carbodiimides (R'N=C=NR') could be, in principle, a straightforward and atomeconomical route to substituted phosphaguanidines R'N=C(PR₂)(NHR'), a class of heteroatom-containing compounds which may be used as building blocks for organic synthesis and as unique ligands for various metal complexes.³ However, such catalytic process has been hardly explored. The synthesis of neutral phosphaguanidines was first reported in 1980.4,5 Addition of diphenylphosphine to an N,N'-diaryl substituted carbodiimide such as p-MeC₆H₄N=C=NC₆H₄Me-p was reported to occur at elevated temperatures to afford the N,N'-diaryl substituted phosphaguanidine corresponding p-MeC₆H₄N=C(PPh₂)(NHC₆H₄Me-p).⁴ However, N,N'-dialkyl or N-alky-N'-aryl substituted phosphaguanidines could not be obtained in this way because the less electrophilic N,N'-dialkyl or N-alky-N'-aryl carbodiimides could not accept nucleophilic of a phosphine. Silylated phosphaguanidines attack $R'N=C{PR(SiMe_3)}{N(SiMe_3)R'}$ could be obtained by insertion of a carbodiimide into one of the P-Si bonds of bis-silylated phosphines, but depending on the nitrogen substituents, silvlmigration could occur to give the phosphaalkene derivatives $RP=C{N(SiMe_3)R'}_2$.⁵ Very recently, Coles and coworkers reported the synthesis of N,N'-dialkyl substituted phosphaguanidines $R'N=C(PPh_2)(NHR')$ (R' = Cy, i-Pr) by nucleophilic addition of LiPPh2 (generated in-situ from Ph2PH and n-BuLi) to a stoichiometric amount of R'N=C=NR', followed by protonolysis of the resultant lithium phosphaguanidinates [Ph₂PC(NR'₂)Li] with [HNEt₃][Cl].^{3a} We report here a novel catalytic synthesis of phosphaguanidines by alkali-metal-catalyzed addition of phosphines to carbodiimides.⁶⁻⁸ The commercially

readily available alkali metal compounds such as $(Me_3Si)_2NM$ (M = Li, Na, K) and RLi $(R = n-Bu, CH_2SiMe_3)$ can be used as excellent catalyst precursors. Aromatic C–Br and C–Cl bonds survived the reaction conditions. The alkali metal phosphaguanidinate species has been confirmed to be a true catalyst species.

As a control experiment, N,N'-diisopropylcarbodiimide was heated with diphenylphosphine in C₆D₅Cl at 140 °C, but no reaction was observed in 12 h (Table 1, entry 1). In contrast, addition of a small amount of an organo alkali metal compound such as (Me₃Si)₂NM (M = Li, Na, K) or RLi (R = *n*-Bu, CH₂SiMe₃) resulted in rapid reaction to give the corresponding phosphaguanidine **1a** at room temperature (Table 1).[‡] THF seemed to be a better solvent than benzene or toluene (Table 1, entries 2–4). Among (Me₃Si)₂NM (M = Li, Na, K), the activity increased as the metal size becomes larger (K > Na > Li) (Table 1, entries 2, 7, 8). Thus, in the presence of 1 mol% of (Me₃Si)₂NK, the reaction of Ph₂PH with 'PrN=C=N'Pr yield **1a** quantitatively at room temperature in less than 5 min (Table 1, entries 9–11).

Table 2 summarizes some representative results of the $(Me_3Si)_2NM$ -catalyzed reactions between phosphines and carbodiimides having various substituents. In the presence of 1 mol% of $(Me_3Si)_2NK$, the reaction of Ph₂PH with carbodiimides having N,N'-diaryl, N-aryl-N'-alkyl, and N,N'-dialkyl substituents was completed at room temperature within 5 min to yield the

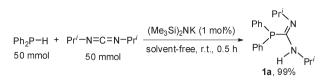
Table 1Alkali-metal-catalyzed addition of diphenylphosphine toN,N'-diisopropylcarbodiimide^a

$Ph_{2}P-H + Pr^{i}-N=C=N-Pr^{i} \xrightarrow{cat.} Ph \xrightarrow{Pr^{i}} N$ $Ph \xrightarrow{Pr^{i}} N$ $H \xrightarrow{Pr^{i}} 1a$								
Entry	Cat . (mol%)	Solvent	Temp (°C)	Time (min)	Conv ^b (%)			
1	_	C ₆ D ₅ Cl	140	720	1a (0)			
2	(Me ₃ Si) ₂ NLi (3)	C_6D_6	r.t.	40	1a (>99)			
3	$(Me_3Si)_2NLi$ (3)	$THF-d_8$	r.t.	15	1a (>99)			
4	$(Me_3Si)_2NLi$ (3)	toluene-d ₈	r.t.	45	1a (>99)			
5	n-BuLi (3)	C_6D_6	r.t.	40	1a (>99)			
6	(Me ₃ Si)CH ₂ Li (3)	C_6D_6	r.t.	40	1a (>99)			
7	$(Me_3Si)_2NNa$ (3)	C_6D_6	r.t.	10	1a (>99)			
8	$(Me_3Si)_2NK$ (3)	C_6D_6	r.t.	<5	1a (>99)			
9	$(Me_3Si)_2NK$ (1)	C_6D_6	r.t.	<5	1a (>99)			
10	$(Me_3Si)_2NK$ (1)	$THF-d_8$	r.t.	<5	1a (>99)			
11	$(Me_3Si)_2NK$ (1)	toluene-d ₈	r.t.	<5	1a (>99)			
a Conditions: diphenylphosphine, 0.60 mmol; diisopropyl- carbodiimide, 0.60 mmol. b Conversion determined by $^{31}{\rm P}$ NMR.								

Organometallic Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan. E-mail: houz@riken.jp; Fax: 81 48 462 4665; Tel: 81 48 467 9393

[†] Electronic supplementary information (ESI) available: experimental details, X-ray data for **2**, and scanned NMR spectra of all new products. See DOI: 10.1039/b609198a

 Table 2
 Catalytic addition of phosphines to carbodiimides^a

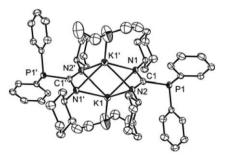

R ² R ³	P−H + R−N=C=N-	'R ¹ —	le ₃ Si) ₂ NM THF, r.t.	\rightarrow R^2 R^3	R N H H 1a-q			
Entry	R ² R ³ PH	R, R^1	M (mol%)	Time	Yield ^b (%)			
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ \end{array} $	$\begin{array}{c} Ph_2PH \\ Ph_2PH \\ Ph_2PH \\ Ph_2PH \\ Ph_2PH \\ (2-MeC_6H_4)_2PH \\ (3-MeC_6H_4)_2PH \\ (3-MeC_6H_4)_2PH \\ (4-MeC_6H_4)_2PH \\ (4-MeC_6H_4)_2PH \\ (4-ClC_6H_4)_2PH \\ (4-ClC_6H_4)_2PH \\ (4-ClC_6H_4)_2PH \\ (4-BrC_6H_4)_2PH \\ (4-BrC_6H_4)_2PH \\ PhEtPH \\ PhEtPH \\ PhEtPH \\ PhEtPH \\ PhEtPH \\ (i-Bu)_2PH \\ (i-Bu)_2PH \\ (i-Bu)_2PH \\ PhPH_2 \\ CyPH_2 \\ \end{array}$	<i>i</i> -Pr Cy <i>t</i> -Bu, Et Ph, Cy <i>p</i> -tolyl <i>i</i> -Pr <i>i</i> -Pr	K (1) K (3) Li (3) Li (3) Li (3) K (1) K (1)	5 min 5 min 4 h 24 h 8 h 12 h 24 h 48 h 1 h 1 h	1a (99) 1b (99) 1c (98) 1d (99) 1g (99) 1f (99) 1j (99) 1k (98) 1l (98) 1l (98) 1l (98) 1l (98) 1l (98) 1n (97) 1n (96) 1n (90) ^c 1o (0) 1o (25) ^d 1p (97) 1q (80) ^e			
^{<i>a</i>} Conditions: phosphine, 2.02 mmol; carbodiimide, 2.00 mmol; catalyst, 0.02 mmol; solvent, 5 mL, unless otherwise noted. ^{<i>b</i>} Isolated yield. ^{<i>c</i>} Toluene, 110 °C. ^{<i>d</i>} THF, 110 °C; conversion determined by ³¹ P NMR. ^{<i>e</i>} (^{<i>i</i>} PrN=CNH ^{<i>i</i>} Pr) ₂ (PCy) (15%, determined								

³¹P NMR) was also observed.

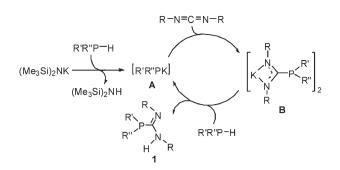
bv

corresponding substituted phosphaguanidines quantitatively (Table 2, entries 1-5). A wide range of diarylphosphines could be used as the nucleophiles. The reaction was not affected by either electron-withdrawing or -donating substituents or their positions at the phenyl ring of the phosphines (Table 2, entries 6-13). Aromatic C-Cl (entries 11 and 12) and C-Br (entry 13) bonds survived the catalytic conditions to yield selectively the corresponding halogen-substituted phosphaguanidines 1k-m, a new class of phosphaguanidine building blocks that could be useful for construction of further larger phosphaguanidine derivatives. It is also noteworthy that such halogen-tolerance was also observed even when n-BuLi was used as a catalyst. This is in sharp contrast with the stoichiometric reactions between $(4-XC_6H_4)_2PH/n-BuLi$ and 'PrN=C=N'Pr, which yielded a mixture of the X-containing phosphaguanidines and the X-free phosphaguanidines (X = Cl,Br) after protonolysis with [HNEt₃][Cl]. The reaction of an alkyl/aryl phosphine such as ethylphenylphosphine (entry 14) or a dialkyl phosphine such as diisobutylphosphine (entry 17) with ⁱPrN=C=NⁱPr required a longer time for completion, probably owing to the weaker acidity of these phosphines compared to that of diaryl phosphines. The reaction of PhPH₂ with ^{*i*}PrN=C=N^{*i*}Pr afforded selectively the mono-addition product ^{*i*}PrN= C(PHPh)(NH'Pr) (1p) (entry 20), while in the case of CyPH₂, the bis-addition product (ⁱPrN=CNHⁱPr)₂(PCy) was also obtained as a minor product (15%) in addition to the monoaddition product 'PrN=C(PHCy)(NH'Pr) (1q, 80%) (entry 21). In most of the above reactions, the resulting phosphaguanidine

Scheme 1 Catalytic addition of diphenylphosphine to N,N'-diisopropylcarbodiimide under a solvent-free condition.


products could be isolated in excellent yields by a single recrystallization.

The present catalytic reaction could also be carried out under a solvent-free condition on a larger preparative scale, demonstrating well its practical usefulness. For example, addition of 1 mol% of $(Me_3Si)_2NK$ to Ph_2PH (50 mmol) and PrN=C=N'Pr (50 mmol) at room temperature yielded $PrN=C(PPh_2)(NH'Pr)$ (1a) quantitatively in 30 min (Scheme 1).


In a 1 : 1 : 1 reaction of $(Me_3Si)_2NK$, Ph_2PH , and CyN=C=NCy, the potassium phosphaguanidinate complex $[Ph_2PC(NCy)_2K(OEt_2)]_2$ (2) was isolated quantitatively from a diethyl ether solution and confirmed by an X-ray diffraction analysis.§ There is a crystallographic inversion centre in 2. Complex 2 adopts an "inverse sandwich" dimeric structure, in which the two K atoms are bridged by two coplanar guanidinate units in a μ - η^2 , η^2 -fashion through the nitrogen atoms (Fig. 1). This coordination mode is in contrast with that observed in a lithium analogue,^{3b} and as far as we are aware, has not been reported previously for a phosphaguanidinate unit.⁹ Addition of 2 molar equiv. of Ph_2PH to a THF solution of 2 yielded 1b and KPPh₂ quantitatively.

A possible mechanism for the present catalytic reaction could be proposed as shown in Scheme 2. The acid–base reaction between $(Me_3Si)_2NK$ and a phosphine P–H bond should yield straightforwardly a phosphide species such as **A**. Nucleophilic addition of the phosphide species to a carbodiimide would afford the phosphaguanidinate species **B**, which on abstraction of a proton from another molecule of phosphine would yield the phosphaguanidine product **1** and regenerate the phosphide **A**. The isolation of **2** and its reaction with Ph₂PH to give **1b** and KPPh₂ strongly support this mechanism.

In summary, we have demonstrated that alkali metal compounds such as $(Me_3Si)_2NK$ can act as an excellent catalyst precursor for the addition of various phosphine P–H bonds to carbodiimides, which offers the first general and atom-economical

Fig. 1 ORTEP drawing of **2** (ellipsoids drawn at the 50% probability level; hydrogen atoms omitted for clarity). Selected bond length (Å): K(1)–N(1) 2.891(2), K(1)–N(2) 2.759(2), K(1)–N(1') 2.857(2), K(1)–N(2') 2.788(2), N(1)–C(1) 1.331(3), N(2)–C(1) 1.319(3). ' = -x, -y, -z.

Scheme 2 A possible mechanism of catalytic addition of phosphines to carbodiimides.

route to substituted phosphaguanidines, with excellent tolerability to aromatic carbon-halogen bonds. In addition, this catalytic process is very clean and can also be carried out under solvent-free conditions, showing high potential of practical use.

This work was partly supported by RIKEN's Ecomolecular Science Research Program and by the Natural Science Foundation of China (20328201).

Notes and references

‡ A typical procedure for the preparation of phosphaguanidines 1 by use of (Me₃Si)₂NK as a catalyst. Under a dry and oxygen-free argon atmosphere, a THF solution (3 mL) of diphenylphosphine (376 mg, 2.02 mmol) was added to a THF solution (2 mL) of (Me₃Si)₂NK (4 mg, 0.02 mmol) in a Schlenk tube. Then N,N'-diisopropylcarbodiimide (252 mg, 2.00 mmol) was added to the above reaction mixture. After 5 min of stirring, the solvent was removed under reduced pressure. The residue was extracted with hexane and filtered to give a clean solution. After removal of the solvent under vacuum, the residue was recrystallized in hexane to provide a colorless solid 1a. It should be noted that this type of phosphaguanidine is very sensitive to oxygen, and must be stored under an inert atmosphere. IR (Nujol): v = 3431 (N–H), 1599 (C=N), 1462, 1377, 1173, 1026, 743, 696 cm⁻¹; ¹H NMR (300 MHz, C_6D_6): $\delta = 0.94$ (d, J = 6.6 Hz, 6H, CH(CH₃)₂), 1.23 (d, J = 6.3 Hz, 6H, CH(CH₃)₂), 3.63 (d, ${}^{3}J = 6.3$ Hz, 1H, NH), 4.28-4.43 (m, 2H, CH), 7.03-7.05 (m, 6H, C₆H₅), 7.42-7.47 (m, 4H, C_6H_5); ¹³C NMR (75 MHz, C_6D_6): $\delta = 22.5$, 25.3, 42.9, 52.2 (d, $^{3}J_{PC} = 35.3 \text{ Hz}$, 129.0 (d, $^{3}J_{PC} = 6.8 \text{ Hz}$), 129.3, 134.3 (d, $^{2}J_{PC} = 13.7 \text{ Hz}$), 152.4 (d, $^{1}J_{PC} = 31.6 \text{ Hz}$); $^{31}P_1^{+}H_2$ NMR (160 MHz, C₆D₆): $\delta = -18.5$; HRMS Calcd for [M + H]⁺ C₁₉H₂₆N₂P 313.1834; Found 313.1853.

Isolation of the potassium phosphaguanidinate [Ph2PC(NCy)2K(OEt2)]2 (2). Under a dry and oxygen-free argon atmosphere, a THF solution (3 mL) of diphenylphosphine (372 mg, 2.00 mmol) was added to a THF solution (5 mL) of (Me₃Si)₂NK (399 mg, 2.00 mmol) in a Schlenk tube. Then N,N'-dicyclohexylcarbodiimide (413 mg, 2.00 mmol) was added to the above reaction mixture. After 1 h of stirring, the solvent was removed under reduced pressure. The residue was extracted with ether and filtered to give a clean solution. The solution volume was reduced under vacuum to precipitate 2 as light vellow crystalline powder (969 mg, 0.96 mmol, 96%) yield). Single crystals of 2 suitable for X-ray analysis were grown in ether at room temperature overnight. IR (Nujol): v = 2122, 1582, 1471, 1377, 1339, 1076, 979, 740 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): $\delta = 1.01$ (t, J = 7.2 Hz, 12H, (CH₃CH₂)₂O), 1.21-1.86 (br, 40H, CH₂(Cy)), 3.11-3.16 (m, 4H, CH(Cy)), 3.28 (q, J = 7.2 Hz, 8H, (CH₃CH₂)₂O), 6.76–6.80 (m, 4H, C₆H₅), 7.03–7.09 (m, 8H, C_6H_5), 7.65 (br, 8H, $\tilde{C_6H_5}$); ¹³C NMR (100 MHz, C_6D_6): $\delta = 15.8, 25.0, 26.0, 35.5, 55.8, 66.0, 129.0 (d, <math>{}^{3}J_{PC} = 6.6 \text{ Hz}), 129.3, 134.3 (d, <math>{}^{1}J_{PC} = 18.9 \text{ Hz}), 135.9 (d, {}^{2}J_{PC} = 16.5 \text{ Hz}), 139.8 (d, {}^{1}J_{PC} = 34.6 \text{ Hz}), {}^{31}P\{{}^{1}H\}$ NMR (160 MHz, C_6D_6): $\delta = -14.8, -18.0, 0$ -20.6; Anal. Calcd for C58H84K2N4O2P2: C, 69.01; H, 8.39; N, 5.55; Found: C, 68.96; H, 8.18; N, 5.38%.

§ Cryatal data for **2**: $C_{58}H_{84}K_2N_4O_2P_2$, $M_w = 1009.43$ g mol⁻¹, T = 173(1) K, Monoclinic, space group P2(1)/c, a = 11.1009(12), b = 19.529(2), c = 14.3917(15) Å, $\alpha = 90$, $\beta = 112.539(2)$, $\gamma = 90^\circ$, V = 2881.6(5) Å³, Z = 2, $\rho_{calcd} = 1.163$ Mg m⁻³, $\mu = 0.263$ mm⁻¹, reflections collected: 14823, independent reflections: 5091 ($R_{int} = 0.0259$), Final *R* indices [$I > 2\sigma I$]: $R_1 = 0.0539$, $wR_2 = 0.1626$, *R* indices (all data): $R_1 = 0.0689$, $wR_2 = 0.1716$. The unique coordinated ether molecule has its CH₂ groups disordered equally over two sites (only one of which is shown in Fig. 1). No allowance was made for the ether H atoms. CCDC 606651. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b609198a

- Review: O. Delacroix and A. C. Gaumont, Curr. Org. Chem., 2005, 9, 1851–1882.
- A. M. Kawaoka and T. J. Marks, J. Am. Chem. Soc., 2005, 127, 6311–6324; (b) M. R. Douglass, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 2001, 123, 10221–10238; (c) A. D. Sadow and A. Togni, J. Am. Chem. Soc., 2005, 127, 17012–17024; (d) H. Ohmiya, H. Yorimitsu and K. Oshima, Angew. Chem., Int. Ed., 2005, 44, 2368–2370; (e) M. O. Shulyupin, M. A. Kazankova and I. P. Beletskaya, Org. Lett., 2002, 4, 761–763.
- (a) J. Grundy, M. P. Coles and P. B. Hitchcock, *Dalton Trans.*, 2003, 2573–2577; (b) M. P. Coles and P. B. Hitchcock, *Chem. Commun.*, 2002, 2794–2795; (c) N. E. Mansfield, M. P. Coles and P. B. Hitchcock, *Dalton Trans.*, 2005, 2833–2841; (d) J. Grundy, M. P. Coles, A. G. Avent and P. B. Hitchcock, *Chem. Commun.*, 2004, 2410–2411; (e) N. E. Mansfield, M. P. Coles and P. B. Hitchcock, *Dalton Trans.*, 2006, 2052–2054; (f) M. P. Coles, *Dalton Trans.*, 2006, 985–1001; (g) N. E. Mansfield, M. P. Coles, A. G. Avent and P. B. Hitchcock, *Organometallics*, 2006, 25, 2470–2474; (h) D. H. M. W. Thewissen, H. P. M. M. Ambrosius, H. L. M. van Gaal and J. J. Steggerda, *J. Organomet. Chem.*, 1980, 192, 101–113.
- 4 (a) D. H. M. W. Thewissen and H. P. M. M. Ambrosius, *Recl. Trav. Chim. Pays-Bas*, 1980, **99**, 344–346; (b) H. P. M. M. Ambrosius, A. H. I. M. van der Linden and J. J. Steggerda, *J. Organomet. Chem.*, 1980, **204**, 211–220.
- 5 K. Issleib, H. Schmidt and H. Meyer, J. Organomet. Chem., 1980, 192, 33–39.
- 6 For examples of alkali-metal-catalyzed reactions, see: (a) T. Harada, K. Mizunashi and K. Muramatsu, Chem. Commun., 2006, 638–639; (b) T. Harada, K. Muramatsu, T. Fujiwara, H. Kataoka and A. Oku, Org. Lett., 2005, 7, 779–781; (c) N. Yamagiwa, H. Qin, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 13419–13417; (d) M. Itoh, K. Inoue, J. Ishikawa and K. Iwata, J. Organomet. Chem., 2001, 629, 1–6; (e) J. Ishikawa and M. Itoh, J. Catal., 1999, 185, 454–461; (f) L. Assadourian and G. Gau, Appl. Organomet. Chem., 1991, 5, 167–172; (g) H. Prines and H. E. Eschinazi, J. Am. Chem. Soc., 1956, 78, 1178–1180.
- 7 For examples of rare-earth-metal-catalyzed nucleophilic addition to carbodiimides, see: (*a*) W.-X. Zhang, M. Nishiura and Z. Hou, *J. Am. Chem. Soc.*, 2005, **127**, 16788–16789; (*b*) W.-X. Zhang, M. Nishiura and Z. Hou, *Synlett*, 2006, **8**, 1213–1216.
- 8 For examples of transition-metal-promoted nucleophilic addition to carbodiimides, see: (a) J. Vicente, J. A. Abad, M.-J. López-Sáez and P. G. Jones, *Organometallics*, 2006, **25**, 1851–1853; (b) F. Montilla, A. Pastor and A. Galindo, *J. Organomet. Chem.*, 2004, **689**, 993–996; (c) T.-G. Ong, G. P. A. Yap and D. S. Richeson, *J. Am. Chem. Soc.*, 2003, **125**, 8100–8101.
- 9 For examples of amidinate and guanidinate complexes having a μ-η², η²-structure, see: (a) C. Knapp, E. Lork, P. G. Watson and R. Mews, *Inorg. Chem.*, 2002, 41, 2014–2025; (b) G. R. Giesbrecht, A. Shafir and J. Arnold, J. Chem. Soc., Dalton Trans., 1999, 3601–3604; (c) P. B. Hitchcock, M. F. Lappert and M. Layh, J. Chem. Soc., Dalton Trans., 1998, 3113–3117; (d) P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Organomet. Chem., 1995, 488, 241–248; (e) M. S. Eisen and M. Kapon, J. Chem. Soc., Dalton Trans., 1994, 3507–3510; (f) D. Stalke, M. Wedler and F. T. Edelmann, J. Organomet. Chem., 1992, 431, C1–C5.